Curso de Bioquímica 2010

Bienvenidos:







Este espacio lo he creado para ustedes, aquí encontrarán los textos de resumen del curso que conformarán su antología , imágenes, actividades y más, espero que les sea de utilidad!!!








D-glucosa

sábado, 20 de noviembre de 2010

ÁCIDOS NUCLEICOS

ÁCIDOS NUCLEICOS.
Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869.
En la naturaleza existen solo dos tipos de ácidos nucleicos: El ADN (ácido desoxirribonucleico) y el ARN (ácido ribonucleico) y están presentes en todas las células.
Su función biológica no quedó plenamente confirmada hasta que Avery y sus colaboradores demostraron en 1944 que el ADN era la molécula portadora de la información genética.
Los ácidos nucleicos tienen al menos dos funciones: trasmitir las características hereditarias de una generación a la siguiente y dirigir la síntesis de proteínas específicas.
Químicamente, estos ácidos están formados, por unidades llamadas nucleótidos: cada nucleótido a su vez, está formado por tres tipos de compuestos:
1. Una pentosa o azúcar de cinco carbonos: se conocen dos tipos de pentosas que forman parte de los nucleótidos, la ribosa y la desoxirribosa. El ADN sólo tiene desoxirribosa y el ARN tiene sólo ribosa.

2. Una base nitrogenada: que son compuestos anillados que contienen nitrógeno. Se pueden identificar cinco de ellas: adenina, guanina, citosina, uracilo y timina.


3. Un radical fosfato: es derivado del ácido fosfórico (H3PO4-). Une los nucleótidos entre sí asociando las pentosas de dos nucleótidos consecutivos. La unión se produce con el carbono 3’ de un nucleótido con el carbono 5’ del siguiente.








MODELO DE WATSON-CRICK. Cada molécula de DNA está formada por dos largas cadenas de polinucleótidos que corren en direcciones opuestas formando una hélice doble alrededor de un eje imaginario central. De esta forma la polaridad de cada cadena es opuesta. Cada nucleótido está en un plano perpendicular al de la cadena polinucleótida.
Las dos cadenas se encuentran apareadas por uniones de hidrógeno establecidas entre los pares de bases. El apareamiento es altamente específico. Existe una distancia física de 11 A entre dos moléculas de desoxirribosa en las cadenas opuestas (sólo se pueden aparear una base púrica con una pirimídica. A-T y G-C entre A y T hay dos puentes de hidrógeno y entre G-C hay tres. Son imposibles otras uniones) La secuencia de bases a lo largo de una cadena de polinucleótido puede variar considerablemente, pero en la otra cadena la frecuencia debe ser complementaria.
ARN. Ácido nucleico formado por nucleótidos en los que el azúcar es ribosa, y las bases nitrogenadas son adenina, uracilo, citosina y guanina. Actúa como intermediario y complemento de las instrucciones genéticas codificadas en el ADN.

Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:
• El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
• El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
• El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.

No hay comentarios:

Publicar un comentario