Curso de Bioquímica 2010

Bienvenidos:







Este espacio lo he creado para ustedes, aquí encontrarán los textos de resumen del curso que conformarán su antología , imágenes, actividades y más, espero que les sea de utilidad!!!








D-glucosa

sábado, 20 de noviembre de 2010

SÍNTESIS DE PROTEÍNAS

SÍNTEIS DE PROTEÍNAS
El genoma es toda la información genética presente en el ADN del individuo. Las subdivisiones o partes del ADN forman los genes, cada gen es una secuencia de nucleótidos que contiene la información para crear una determinada proteína. El genoma humano contiene alrededor de 30 000 genes. Toda la información encerrada en un gen se utiliza para sintetizar los distintos tipos de ARN y todas las proteínas. Dentro de cada gen hay una parte que se transcribe a ARN y otra parte que determina en que lugar se expresa.

Se puede considerar al ADN como un lenguaje que le indica a la célula como fabricar todas las proteínas necesarias para cumplir con las funciones vitales. Ese lenguaje constituye el código genético, que tiene cuatro letras (A-C-G-T) representantes de las cuatro bases nitrogenadas del ADN. Mediante el código genético, la célula lee esas cuatro letras básicas, las convierte en palabras de tres letras (triplete) y las interpreta para elaborar las proteínas específicas. En síntesis, el código genético es el conjunto de reglas de correspondencia entre las bases nitrogenadas de un ácido nucleico (ADN o ARN) y los aminoácidos para la fabricación o síntesis de proteínas.
Las palabras del código genético se denominan codones, cada uno de los cuales está formado por tres letras (tres bases nitrogenadas) que conforman un triplete. Cada codón indica que aminoácido es necesario para fabricar una proteína. Por ejemplo, el codón CUA se lee leucina, el codón CCG prolina y el codón UUC fenilalanina.
El código genético está formado por 64 combinaciones de codones (tripletes) y sus correspondientes aminoácidos, donde cada uno de ellos tiene sus propias palabras.
TRANSCRIPCIÓN. A partir del ADN se sintetiza ARN por medio de la enzima ARN polimerasa, que copia una secuencia de nucleótidos (genes) de una de las cadenas del ADN. El ARN es el encargado de controlar las etapas intermedias en la formación de proteínas mediante el ARN mensajero, el ARN de transferencia y el ARN ribosómico
La síntesis de ARN se produce partiendo de la copia de un tramo de ADN. Es así como la información contenida en el ADN es transferida al ARN. La transcripción se inicia cuando la enzima ARN polimerasa se une a la parte de ADN (gen) que lleva el código para elaborar una determinada proteína. De inmediato se separan las dos cadenas de ADN y quedan expuestas sus bases nitrogenadas. El desplazamiento de la ARN polimerasa recorre la cadena expuesta de ADN insertando en dichas bases nitrogenadas los nucleótidos libres de ARN que hay en el núcleo.
La inserción entre bases siempre es citosina del ADN con guanina del ARN, y viceversa. Por otro lado, la timina del ADN se aparea con la adenina del ARN y la adenina del ADN hace lo propio con el uracilo del ARN. Luego que la ARN polimerasa termina de copiar la cadena del ADN se libera la cadena de ARN, mientras que las bases complementarias del ADN se cierran.
El ARN formado se denomina ARN mensajero (ARNm), quien lleva la copia genética del núcleo al citoplasma con las instrucciones para sintetizar una proteína determinada.
TRADUCCIÓN. El ARNm contiene un código que se utiliza como molde para la síntesis de proteínas. Es decir, se traduce el lenguaje de la serie de bases nitrogenadas del ARNm al lenguaje de la serie de aminoácidos de la proteína. Este proceso denominado traducción se realiza en los ribosomas adosados en la membrana del retículo endoplasmático granular o rugoso. El ribosoma está formado por dos subunidades, una mayor y otra menor.
Los ribosomas utilizan el código genético para establecer la secuencia de aminoácidos que ha sido codificada por el ARN mensajero. Los aminoácidos que van a formar las proteínas están dispersos en el citoplasma celular. Son acercados al ARN mensajero por el ARN de transferencia (ARNt). Uno de los lados del ARNt transporta un triplete de bases llamado anticodón. En el otro lado se une un aminoácido, proceso que demanda gasto de energía por transformación de adenosin trifosfato (ATP) en adenosin monofosfato (AMP).
La síntesis o traducción de las proteínas se divide en tres fases, llamadas de iniciación, de elongación y de terminación.
Fase de iniciación La síntesis de proteínas comienza en el momento en que el ARN mensajero se mueve por el ribosoma hasta el codón AUG. Las subunidades ribosomales se unen.
En ese preciso instante, el anticodón del ARN de transferencia se une al codón AUG del ARNm transportando el aminoácido metionina
Fase de elongación Llega un segundo ARNt llevando su respectivo aminoácido y se acopla al siguiente codón del ARNm, para el ejemplo, al codón CCU. Hasta aquí se ha formado un dipéptido, donde ambos aminoácidos permanecen unidos por un enlace peptídico.
El primer ARNt que llegó al ribosoma se retira del complemento ribosómico en busca de otros aminoácidos. El tercer ARNt llega con otro aminoácido y se une al codón del ARNm, a AUC en el ejemplo. El aminoácido se adhiere al dipéptido antes formado mediante otro enlace peptídico.
El segundo ARNt se retira del ribosoma. Un cuarto ARNt llega con su aminoácido hasta el ribosoma para acoplarse con el codón UCA del ARNm. La secuencia se repite tantas veces como aminoácidos tenga la futura proteína.
Fase de terminación La etapa final de la síntesis de proteínas continúa hasta que aparecen los llamados codones stop o de terminación, representados por UUA, UAG y UGA. No existen anticodones complementarios para los codones stop. En cambio, quienes sí reconocen a estos codones son unas proteínas llamadas factores de terminación, que detiene la síntesis de proteínas. La proteína formada se desprende del ribosoma y queda libre en el citoplasma, lista para ser utilizada por la célula para cumplir una determinada función.

El ARNm se desprende del ribosoma y puede ser leído de nuevo por otros ribosomas, incluso en forma simultánea. También se liberan el ARNt y el factor de terminación. Las subunidades del ribosoma se separan.
Resumiendo, se puede establecer que:
-La traducción es el proceso donde las secuencias del ARN mensajero se convierten en una secuencia de aminoácidos.
-La molécula del ARN mensajero puede tener hasta 10000 bases nitrogenadas.
-Un codón está formado por tres bases nitrogenadas (triplete) que establece un aminoácido.
-El complemento entre codones y aminoácidos constituye el código genético.
-El ARN de transferencia lleva el aminoácido adecuado al ribosoma.
-En uno de los extremos del ARNt hay tres bases nitrogenadas que se ubican en el anticodón, que es el complemento del codón del ARNm.
-La unión aminoácido-ARN de transferencia se realiza con gasto de energía, donde el ATP se transforma de AMP.
-Cuando aparece codón de terminación (codón stop) del ARNm se acoplan los factores de terminación y cesa la síntesis de proteínas.

ÁCIDOS NUCLEICOS

ÁCIDOS NUCLEICOS.
Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869.
En la naturaleza existen solo dos tipos de ácidos nucleicos: El ADN (ácido desoxirribonucleico) y el ARN (ácido ribonucleico) y están presentes en todas las células.
Su función biológica no quedó plenamente confirmada hasta que Avery y sus colaboradores demostraron en 1944 que el ADN era la molécula portadora de la información genética.
Los ácidos nucleicos tienen al menos dos funciones: trasmitir las características hereditarias de una generación a la siguiente y dirigir la síntesis de proteínas específicas.
Químicamente, estos ácidos están formados, por unidades llamadas nucleótidos: cada nucleótido a su vez, está formado por tres tipos de compuestos:
1. Una pentosa o azúcar de cinco carbonos: se conocen dos tipos de pentosas que forman parte de los nucleótidos, la ribosa y la desoxirribosa. El ADN sólo tiene desoxirribosa y el ARN tiene sólo ribosa.

2. Una base nitrogenada: que son compuestos anillados que contienen nitrógeno. Se pueden identificar cinco de ellas: adenina, guanina, citosina, uracilo y timina.


3. Un radical fosfato: es derivado del ácido fosfórico (H3PO4-). Une los nucleótidos entre sí asociando las pentosas de dos nucleótidos consecutivos. La unión se produce con el carbono 3’ de un nucleótido con el carbono 5’ del siguiente.








MODELO DE WATSON-CRICK. Cada molécula de DNA está formada por dos largas cadenas de polinucleótidos que corren en direcciones opuestas formando una hélice doble alrededor de un eje imaginario central. De esta forma la polaridad de cada cadena es opuesta. Cada nucleótido está en un plano perpendicular al de la cadena polinucleótida.
Las dos cadenas se encuentran apareadas por uniones de hidrógeno establecidas entre los pares de bases. El apareamiento es altamente específico. Existe una distancia física de 11 A entre dos moléculas de desoxirribosa en las cadenas opuestas (sólo se pueden aparear una base púrica con una pirimídica. A-T y G-C entre A y T hay dos puentes de hidrógeno y entre G-C hay tres. Son imposibles otras uniones) La secuencia de bases a lo largo de una cadena de polinucleótido puede variar considerablemente, pero en la otra cadena la frecuencia debe ser complementaria.
ARN. Ácido nucleico formado por nucleótidos en los que el azúcar es ribosa, y las bases nitrogenadas son adenina, uracilo, citosina y guanina. Actúa como intermediario y complemento de las instrucciones genéticas codificadas en el ADN.

Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:
• El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
• El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
• El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.